Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.462
Filtrar
1.
Nature ; 628(8009): 746-751, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658682

RESUMO

The valley degree of freedom1-4 of electrons in materials promises routes towards energy-efficient information storage with enticing prospects for quantum information processing5-7. Current challenges in utilizing valley polarization are symmetry conditions that require monolayer structures8,9 or specific material engineering10-13, non-resonant optical control to avoid energy dissipation and the ability to switch valley polarization at optical speed. We demonstrate all-optical and non-resonant control over valley polarization using bulk MoS2, a centrosymmetric material without Berry curvature at the valleys. Our universal method utilizes spin angular momentum-shaped trefoil optical control pulses14,15 to switch the material's electronic topology and induce valley polarization by transiently breaking time and space inversion symmetry16 through a simple phase rotation. We confirm valley polarization through the transient generation of the second harmonic of a non-collinear optical probe pulse, depending on the trefoil phase rotation. The investigation shows that direct optical control over the valley degree of freedom is not limited to monolayer structures. Indeed, such control is possible for systems with an arbitrary number of layers and for bulk materials. Non-resonant valley control is universal and, at optical speeds, unlocks the possibility of engineering efficient multimaterial valleytronic devices operating on quantum coherent timescales.


Assuntos
Dissulfetos , Molibdênio , Molibdênio/química , Dissulfetos/química , Elétrons , Eletrônica/instrumentação , Fenômenos Ópticos
2.
Chemosphere ; 354: 141582, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462179

RESUMO

Photocatalytic technologies based on molybdenum disulfide (MoS2) catalysts are effective, eco-friendly, and promising for antibiotic pollutants treatment. The technologies used by MoS2-based nanocomposites and aerogels for efficient degradation of antibiotics are reviewed in detail for the first time in this paper. The fundamental aspects of MoS2 were comprehensively scrutinized, encompassing crystal structure, optical properties, and photocatalytic principle. Then, the main synthesized methods and advantages/disadvantages for the preparation of MoS2-based nanocomposites and aerogels were systematically presented. Besides, a comprehensive overview of diverse MoS2-based nanocomposites and aerogels photo-degradation systems that enhanced the degradation of antibiotic pollutants were revealed. Meanwhile, the photo-degradation mechanism concentrated on the photoelectron transfer pathways and reactive oxygen species (ROS) were systematically evaluated. Finally, the challenges and perspectives for deeply development of MoS2-based nanocomposites and aerogels were discussed. This review may help researchers to deeply understand the research status of MoS2-based nanocomposites and aerogels for antibiotics removal, and makes clear the photo-degradation mechanism from photoelectron transfer pathways and ROS aspects of MoS2-based nanocomposites and aerogels.


Assuntos
Poluentes Ambientais , Nanocompostos , Antibacterianos/química , Águas Residuárias , Molibdênio/química , Espécies Reativas de Oxigênio , Nanocompostos/química
3.
Food Chem ; 448: 138994, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522301

RESUMO

Integrating a pre-enrichment step into electrochemical detection methodologies has traditionally been employed to enhance the performance of heavy metal detection. However, this augmentation also introduces a degree of intricacy into the sensing process and increases energy consumption. In this work, Mo-doped WO3 is grown in situ on carbon cloth by one-step electrodeposition. The electrode detect multiple heavy metal ions simultaneously in the range of 0.1-100.0 µM with LODs ranging from 11.2 to 17.1 nM. The electrode successfully detected heavy metal ions in diverse food samples. This pioneering detection strategy realized the direct and simultaneous detection of multiple heavy metal ions by utilizing the valence property of WO3 and oxygen vacancies generated by molybdenum doping. The Mo-WO3/CC pre-enrichment-free detection electrode boasts straightforward preparation, a streamlined detection procedure, swift response kinetics, and superior performance relative to previously reported electrodes, which makes it possible to develop a portable heavy metal ion detection device.


Assuntos
Técnicas Eletroquímicas , Eletrodos , Contaminação de Alimentos , Metais Pesados , Molibdênio , Tungstênio , Metais Pesados/análise , Contaminação de Alimentos/análise , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Tungstênio/química , Molibdênio/química , Óxidos/química , Limite de Detecção , Análise de Alimentos/instrumentação , Análise de Alimentos/métodos
4.
ACS Appl Mater Interfaces ; 16(13): 15931-15945, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38503698

RESUMO

Accurate pesticide delivery is a key factor in improving pesticide utilization, which can effectively reduce the use of pesticides and environmental risks. In this study, we developed a nanocarrier preparation method which can be controlled by pH/near-infrared response. Mesoporous molybdenum selenide (MoSe2) with a high loading rate was used as the core, poly(acrylic acid) (PAA) with acid response was used as the shell, and prochloraz (Pro) was loaded to form a pH-/near-infrared-responsive core-shell nanosystem (Pro@MoSe2@PAA NPs, abbreviated as PMP). Sclerotinia sclerotiorum infection secretes oxalic acid, forming an acidic microenvironment. In an acidic environment, PMP could quickly release Pro, and the cumulative release amount of Pro at pH = 5.0 was 3.1 times higher than that at pH = 7.4, and the efficiency of releasing Pro in the acidic environment was significantly enhanced. In addition, the release rate of PMP under near-infrared light irradiation was also significantly improved, and the cumulative release of Pro under simulated sunlight was 2.35 times higher than that under no light. The contact angles of PMP droplets on rapeseeds were reduced by 31.2 and 13.9% compared to Pro and MoSe2, respectively, which proved that the nanosystems had good wettability. In addition, PMP shows excellent adhesion and resistance to simulated rain washout. In the plate antibacterial experiment, the inhibitory effect of 0.5 µg/mL PMP on S. sclerotiorum was as high as 75.2% after 6 days, which showed a higher bactericidal activity than Pro. More importantly, PMP shows excellent biocompatibility and safety to plants, microorganisms, and cells. In a word, PMP is a green nanopesticide with a dual response of pH/near-infrared light, which provides a new strategy for the sustainable development of agriculture.


Assuntos
Imidazóis , Morfolinas , Nanopartículas , Compostos Organosselênicos , Praguicidas , Molibdênio/farmacologia , Molibdênio/química , Linhagem Celular Tumoral , Nanopartículas/química , Concentração de Íons de Hidrogênio
5.
Int J Biol Macromol ; 265(Pt 2): 130519, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553393

RESUMO

Peroxymonosulfate (PMS), which is dominated by non-free radical pathway, has a good removal effect on organic pollutants in complex water matrices. In this article, a biodegradable cobalt-based catalyst (Co3O4/MoS2@NCS) was synthesized by a simple hydrothermal method with chitosan (CS) as nitrogen­carbon precursor and doped with Cobaltic­cobaltous oxide (Co3O4) and Molybdenum disulfide (MoS2), and was used to activate PMS to degrade dye wastewater. Electrochemical tests showed that Co3O4/MoS2@NCS exhibited higher current density and cycling area than MoS2@NCS and MoS2. In the Co3O4/MoS2@NCS/PMS system, the degradation rate of 30 mg·L-1 rhodamine B (RhB) reached 97.75 % within 5 min, and kept as high as 94.34 % after 5 cycles. Its rate constant was 1.91 and 8.37 times that of MoS2@NCS/PMS and MoS2/PMS, respectively. It had good complex background matrices and acid-base anti-interference ability, and had good universality and reusability. The degradation rate of methyl orange (MO) and methylene blue (MB) were more than 91 % within 5 min at pH 4.8. The experimental results demonstrated that MoS2-modified CS as a carrier exposed a large number of active sites, which not only dispersed Co3O4 nanoparticles and improved the stability of the catalyst, but also provided abundant electron rich groups, and promoted the activation of PMS and the production of reactive oxygen species (ROS). PMS was effectively activated by catalytic sites (Co3+/Co2+, Mo4+/Mo5+/Mo6+, CO, pyridine N, pyrrole N, hydroxyl group and unsaturated sulfur), producing a large number of radicals that attack RhB molecules, causing chromophore cleavage, ring opening, and mineralization. Among them, non-free radical 1O2 was the main ROS for RhB degradation. This work is expected to provide a new idea for the design and synthesis of environmentally friendly and efficient MoS2-modified cobalt-based catalysts.


Assuntos
Carbono , Quitosana , Óxidos , Peróxidos , Carbono/química , Espécies Reativas de Oxigênio/química , Molibdênio/química , Cobalto/química
6.
Anal Methods ; 16(9): 1330-1340, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38328893

RESUMO

Designing a simple and sensitive photoelectrochemical (PEC) sensor is crucial to addressing the limitations of routine analytical methods. The sensitivity of the PEC sensor, however, relies on the photoelectric material used. In this manuscript, composites of MoS2/rGO (MG) with a large area and layered structure are prepared by simple steps. This material exhibits sensitivity to visible light and demonstrates outstanding photoelectric conversion performance. The constructed PEC aptasensor using this material to detect aflatoxin B1 (AFB1) shows significantly higher sensitivity and stability compared to similar sensors. This may be attributed to the presence of surface defects in MoS2, which provide more active sites for photocatalysis. Additionally, graphene oxide (GO) is reduced to rGO by thiourea and forms a heterojunction with MoS2, enhancing charge carrier separation and interfacial electron transfer. Our research has revealed that the photocurrent intensity of the aptamer electrode decreases with an increase in AFB1 concentration, resulting in a "signal-off" PEC aptasensor. The detection limit of this aptasensor is 2.18 pg mL-1, with a linear range of 0.001 to 100 ng mL-1. This result will also provide a reference for the study of other mycotoxins in food.


Assuntos
Aflatoxina B1 , Molibdênio , Aflatoxina B1/análise , Molibdênio/química , Grão Comestível/química , Luz
7.
Inorg Chem ; 63(9): 4419-4428, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38364266

RESUMO

The combination of photodynamic therapy and radiotherapy has given rise to a modality called radiodynamic therapy (RDT), based on reactive oxygen species-producing radiosensitizers. The production of singlet oxygen, O2(1Δg), by octahedral molybdenum (Mo6) clusters upon X-ray irradiation allows for simplification of the architecture of radiosensitizing systems. In this context, we prepared a radiosensitizing system using copper-free click chemistry between a Mo6 cluster bearing azido ligands and the homo-bifunctional linker bis-dPEG11-DBCO. The resulting compound formed nanoparticles, which featured production of O2(1Δg) and efficient cellular uptake, leading to remarkable photo- and radiotoxic effects against the prostatic adenocarcinoma TRAMP-C2 cell line. Spheroids of TRAMP-C2 cells were also used for evaluation of toxicity and phototoxicity. In vivo experiments on a mouse model demonstrated that subcutaneous injection of the nanoparticles is a safe administration mode at a dose of up to 0.08 g kg-1. The reported results confirm the relevancy of Mo6-based radiosensitizing nanosystems for RDT.


Assuntos
Adenocarcinoma , Iodo , Fotoquimioterapia , Animais , Camundongos , Molibdênio/química , Fotoquimioterapia/métodos , Polietilenoglicóis
8.
Environ Sci Pollut Res Int ; 31(11): 17494-17510, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342834

RESUMO

In this study, sugarcane bagasse (SB) was strategically subjected to a delignification process followed by the in situ growth of multi-layered molybdenum disulfide (MoS2) nanosheets with hexagonal phase (2H-phase) crystal structure via hydrothermal treatment. The MoS2 nanosheets underwent self-assembly to form nanoflower-like structures in the aligned cellulose inter-channels of delignified sugarcane bagasse (DSB), the mechanism of which was understood through FTIR and XPS spectroscopic studies. DSB, due to its porous morphology and abundant hydroxyl groups, shows remediation capabilities of methylene blue (MB) dye through physio-sorption but shows a low adsorption capacity of 80.21 mg/g. To improve the removal capacity, DSB after in situ growth of MoS2 (DSB-MoS2) shows enhanced dye degradation to 114.3 mg/g (in the dark) which further improved to 158.74 mg/g during photodegradation, due to catalytically active MoS2. Interestingly, DSB-MoS2 was capable of continuous dye degradation with recyclability for three cycles, reaching an efficiency of > 83%, along with a strong antibacterial response against Gram-positive Staphylococcus aureus (S.aureus) and Gram-negative Escherichia coli (E. coli). The present study introduces a unique strategy for the up-conversion of agricultural biomass into value-added bio-adsorbents, which can effectively and economically address the remediation of dyes with simultaneous microbial decontamination from polluted wastewater streams.


Assuntos
Poluentes Ambientais , Saccharum , Molibdênio/química , Celulose/química , Escherichia coli , Descontaminação , Saccharum/química , Corantes
9.
Environ Sci Pollut Res Int ; 31(12): 18900-18915, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38353819

RESUMO

A new magnetic nanoparticle modified with sodium tungstate (Mnp-Si-W) was synthesized and employed for the sorption of molybdenum from aqueous solutions. The prepared nanoparticles (Mnp-Si-W) were characterized by different advanced techniques. Different parameters that influenced the adsorption percent of Mo(VI) were investigated using a batch process. Based on a systematic investigation of the adsorption isotherms and kinetics models, Mo(VI) adsorption follows the Langmuir model and pseudo-second-order kinetics. According to the Langmuir isotherm model, the Mnp-Si-W nanoparticles exhibited a maximum adsorption capacity of 182.03 mg g-1 for Mo(VI) at pH 2.0. The effect of competing ions showed that the prepared nanoparticles have a high selectivity for the sorption of molybdenum. Moreover, the effect of some interfering anions on Mo(VI) ion sorption is found in the following order: phosphate < sulfate < chromate. Finally, the nanoparticle (Mnp-Si-W) can be successfully reused five times.


Assuntos
Nanopartículas de Magnetita , Compostos de Tungstênio , Poluentes Químicos da Água , Adsorção , Molibdênio/química , Nanopartículas de Magnetita/química , Sulfatos , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise , Soluções
10.
Bioelectrochemistry ; 157: 108635, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38185025

RESUMO

In this work, a novel sandwich-type electrochemical aptasensor based on the dual signal amplification strategy of hemin/G-quadruplex and AuNPs-MoS2 was designed and constructed, which realized the highly sensitive and specific detection of thrombin (TB). In this aptasensor, the 15-mer TB-binding aptamer (TBA-1) modified with thiol group was immobilized on the surface of AuNPs modified glassy carbon electrode (AuNPs/GCE) as capturing elements. Another thiol-modified 29-mer TB-binding aptamer (TBA-2) sequence containing G-quadruplex structure for hemin immobilization was designed. The formed hemin/G-quadruplex/TBA-2 sequence was further combined to the AuNPs decorated flower-like molybdenum disulfide (AuNPs-MoS2) composite surface via Au-S bonds, acting the role of reporter probe. In presence of the target TB, the sandwich-type electrochemical aptamer detection system could be formed properly. With the assistance of the dual signal amplification of AuNPs-MoS2 and hemin/G-quadruplex toward H2O2 reduction, the sandwich-type electrochemical aptasensor was successfully constructed for sensitive detection of TB. The results demonstrate that the fabricated aptasensor displays a wide linear range of 1.0 × 10-6 âˆ¼ 10.0 nM with a low detection limit of 0.34 fM. This proposed aptasensor shows potential application in the detection of TB content in real biological samples with high sensitivity, selectivity, and reliability.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Hemina/química , Trombina/química , Ouro/química , Molibdênio/química , Reprodutibilidade dos Testes , Peróxido de Hidrogênio , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química , Compostos de Sulfidrila , Técnicas Eletroquímicas/métodos , Limite de Detecção
11.
J Colloid Interface Sci ; 660: 412-422, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244507

RESUMO

Monkeypox is a zoonotic viral infection caused by the monkeypox virus (MPXV), which belongs to the Poxviridae family of the Orthopoxvirus (OPXV) genus. Monkeypox is transmitted from animals to humans and humans to humans; therefore, the accurate and early detection of MPXV is crucial for reducing mortality. A novel graphene-based material, graphene quantum rods (GQRs) was synthesized and confirmed using high-resolution transmission electron microscopy (HR-TEM) and atomic force microscopy (AFM). In this study, molybdenum oxide was electrodeposited and one-pot electrodeposition of MoO3-GQRs composite on carbon fiber paper (CFP) enabled by an antibody (Ab A29)/MoO3-GQRs immunoprobe was developed for the early diagnosis of MPXV protein (A29P). Several studies were conducted to analyze the MoO3-GQRs composite, and the prepared Ab A29/MoO3-GQRs immunoprobe selectively bound to the A29P antigen that was measured using differential pulse voltammetry (DPV) analysis and impedance spectroscopy. The antigen-antibody interaction was analyzed using X-ray photoelectron spectroscopy. DPV analysis showed a wide linear range of detection from 0.5 nM to 1000 nM, a detection limit of 0.52 nM, and a sensitivity of 4.51 µA in PBS. The prepared immunoprobe was used to analyze A29P in serum samples without reducing electrode sensitivity. This system is promising for the clinical analysis of A29P antigen and offers several advantages, including cost-effectiveness, ease of use, accuracy, and high sensitivity.


Assuntos
Grafite , Varíola dos Macacos , Animais , Humanos , Grafite/química , Vírus da Varíola dos Macacos , Molibdênio/química
12.
Analyst ; 149(4): 1310-1317, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38247383

RESUMO

RNA modification, particularly pseudouridine (Ψ), has played an important role in the development of the mRNA-based COVID-19 vaccine. This is because Ψ enhances RNA stability against nuclease activity and decreases the anti-RNA immune response. Ψ also provides structural flexibility to RNA by enhancing base stacking compared with canonical nucleobases. In this report, we demonstrate the first application of pseudouridine-modified RNA as a probe (Ψ-RNA) for label-free nucleic acid biosensing. It is known that MoS2 has a differential affinity for nucleic acids, which may be translated into a unique electronic signal. Herein, the Ψ-RNA probe interacts with the pristine MoS2 surface and causes a change in interfacial electrochemical charge transfer in the MoS2 nanosheets. Compared with an unmodified RNA probe, Ψ-RNA exhibited faster adsorption and higher affinity for MoS2. Moreover, Ψ-RNA could bind to complementary RNA and DNA targets with almost equal affinity when engaged with the MoS2 surface. Ψ-RNA maintained robust interactions with the MoS2 surface following the hybridization event, perhaps through its extra amino group. The detection sensitivity of the Ψ-RNA/MoS2 platform was as low as 500 attomoles, while the results also indicate that the probe can distinguish between complementary targets, single mismatches, and non-complementary nucleic acid sequences with statistical significance. This proof-of-concept study shows that the Ψ-RNA probe may solve numerous problems of adsorption-based biosensing platforms due to its stability and structural flexibility.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Humanos , Pseudouridina/química , Sondas RNA , Molibdênio/química , Vacinas contra COVID-19 , RNA/química , Técnicas Biossensoriais/métodos
13.
Anal Chim Acta ; 1288: 342056, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220266

RESUMO

Bacterial infections, viral infections and autoimmune diseases pose a considerable threat to human health. Procalcitonin (PCT) has emerged as a biomarker for the detection of these diseases. To ensure accurate and reliable results, we propose a dual-mode approach that incorporates self-validation and self-correction mechanisms. Herein, we develop a dual-mode self-powered photoelectrochemical (PEC) and colorimetric sensor to determine PCT. The self-powered PEC sensor was constructed with a photoanode of spherical nanoflower-MoS2/Cu2ZnSnS4/Bi2S3 material and a photocathode of CuInS2 material. Ni4Cu2 bimetallic hollow nanospheres (BHNs) possess superoxide dismutase and catalase performance, which facilitate superoxide anion radical (·O2-) and H2O2 circulating generation, promoting the separation of photogenerated electrons and holes to amplify photocurrent signal. Thus Ni4Cu2 BHNs is used as a marker material for PEC sensor. Meanwhile, in colorimetric mode, Ni4Cu2 BHNs converts blue oxTMB to a colourless TMB for colorimetric detection of PCT. Based on this principle, dual-mode determination of PCT with high sensitivity is achieved. The dual-mode method not only demonstrates outstanding properties and practicability, but also presents an effective, highly efficient and reliable method for detecting PCT.


Assuntos
Técnicas Biossensoriais , Nanosferas , Humanos , Nanosferas/química , Pró-Calcitonina , Molibdênio/química , Peróxido de Hidrogênio , Colorimetria , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Limite de Detecção
14.
Nanotechnology ; 35(19)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38271717

RESUMO

Precise identification of cholesterol levels is crucial for the early diagnosis of cardiovascular risk factors. This paper presents a novel approach for cholesterol detection that circumvents the reliance on enzymatic processes. Leveraging the unique properties of advanced materials and electrochemical principles, our non-enzymatic approach demonstrates enhanced sensitivity, specificity, and limit of detection in cholesterol analysis. A non-enzymatic electrochemical biosensor for Cholesterol, employing a nanohybrid comprising Cu2O nanoparticles decorated with MoS2, is presented. The cyclic voltammetry (CV), differential pulse voltammetry (DPV), and amperometry techniques were employed to investigate the electrochemical behaviour of the glassy carbon electrode modified with the Cu2O/MoS2nanohybrid. The modified electrode exhibited an excellent sensitivity of 111.74µAµM-1cm-2through the CV method and showcased a low detection limit of 2.18µM and an expansive linear range spanning 0.1-180µM when employing the DPV method. The electrode also showed good selectivity to various interfering components in 0.1 M NaOH and a satisfied stability of about 15 days at room temperature. The study demonstrates the potential for broader applications in clinical diagnostics and monitoring cardiovascular health, paving the way for a paradigm shift in cholesterol detection methodologies and offering a more efficient and cost-effective alternative to traditional enzymatic assays.


Assuntos
Molibdênio , Nanopartículas , Molibdênio/química , Cobre/química , Técnicas Eletroquímicas/métodos , Nanopartículas/química , Eletrodos , Colesterol , Limite de Detecção
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123781, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38176190

RESUMO

Addressing the limitations observed in previous studies, where the quantitative range of nanoprobes for detecting K+ and adenosine triphosphate (ATP) did not cover concentrations found within living cells, the present study aimed to develop ratiometric nanoprobes that can accurately sense changes in K+ and ATP levels in living cells and quantify them in human fluids. The proposed nanoprobes consisted of recognition flares modified with 6-carboxyfluorescein (FAM) and 5-carboxytetramethylrhodamine (TAMRA), along with thiolate single-stranded DNA (ssDNA) and molybdenum disulfide nanosheets (MoS2 NSs). The thiolate ssDNA acts as a linker between the flares and the MoS2 NSs, directly forming a functional nanostructure at room temperature. The direct conjugation of labeled flares to the MoS2 NSs simplifies the fabrication process. In the absence of K+ and ATP, the hybridization of flares and thiolate ssDNA caused FAM to move away from TAMRA, suppressing the fluorescence resonance energy transfer (FRET) process. However, upon the introduction of K+ and ATP, the flares undergo a structural transformation via the formation of G-quadruplex formation and the generation of hairpin-shaped structures, respectively. This structural change leads to the release of the flares from the ssDNA-conjugated nanosheet surface. The release of the flares brings FAM and TAMRA into close proximity, allowing FRET to occur, leading to FRET and static quenching. By monitoring the ratio between the fluorescence intensities of FAM and TAMRA, the concentration of K+ (5-100 mM) and ATP (0.3-5 mM) can be accurately determined by the proposed nanoprobes. The advantages of these nanoprobes lie in their ability to provide ratiometric measurements, which enhance the accuracy and reliability of the quantification process. The proposed nanoprobes offer potential applications as ratiometric imaging probes for monitoring K+ and ATP-related reactions in living cells, providing valuable insights into cellular processes. Additionally, they can be employed for determining the levels of K+ and ATP in human fluids, offering potential diagnostic applications in various clinical settings.


Assuntos
Técnicas Biossensoriais , DNA de Cadeia Simples , Humanos , Trifosfato de Adenosina , Molibdênio/química , Reprodutibilidade dos Testes , Transferência Ressonante de Energia de Fluorescência/métodos , Oligonucleotídeos , Íons , Potássio , Corantes Fluorescentes/química
16.
Ultrason Sonochem ; 102: 106749, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38217907

RESUMO

Photocatalytic MoS2 with visible light response is considered as a promising bactericidal material owing to its non-toxicity and high antibacterial efficiency. However, photocatalysts always exist as powder, so it is difficult to settle photocatalysts on the metal surface, which limits their application in aqueous environments. To solve this problem, ultrasound and sodium dodecyl sulfate (SDS) were introduced into the co-deposition process of MoS2 and zinc matrix, so that novel MoS2-Zn coatings were obtained. In this process, ultrasound and SDS strongly promoted the dispersion and adsorption of MoS2 on the co-depositing surfaces. Then MoS2 were proved to be composited into the Zn matrix with effective structures, and the addition of SDS effectively increased the loading content of MoS2 in the MoS2-Zn coatings. Besides, the antibacterial performance of the MoS2-Zn coatings was evaluated with three typical fouling bacteria E.coli, S.aureus and B.wiedmannii. The MoS2-Zn coating showed high and broad-spectrum antibacterial properties with over 98 % inhibition rate against these three bacteria. Furthermore, it is proved that the MoS2-Zn coatings generated superoxide (·O2-) and hydroxyl radicals (·OH) under visible light, which played the dominant and subordinate roles in the antibacterial process, respectively. The MoS2-Zn coatings also showed high antibacterial stability after four "light-dark" cycles. According to the results of the attached bacteria, the MoS2-Zn coatings were considered to effectively repel the living pelagic bacteria instead of killing the attached ones, which was highly environmentally friendly. The obtained MoS2-Zn coatings were considered promising in biofilm inhibiting and marine antifouling fields.


Assuntos
Galvanoplastia , Molibdênio , Dodecilsulfato de Sódio/química , Molibdênio/farmacologia , Molibdênio/química , Antibacterianos/farmacologia , Antibacterianos/química , Zinco/química , Escherichia coli
17.
Int J Biol Macromol ; 255: 128522, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040141

RESUMO

In this investigation, we have explored the protective capacity of MoS2 QDs coated with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethyleneglycol) -2000] (DSPE-PEG) linked with (3-carboxypropyl) triphenylphosphonium-bromide (TPP), on the secondary structure of proteins in Alzheimer's disease (AD)-affected brain tissues. Using a cohort of fifteen male SWR/J mice, we establish three groups: a control group, a second group induced with AD through daily doses of AlCl3 and D-galactose for 49 consecutive days, and a third group receiving the same AD-inducing doses but treated with DSPE-PEG-TPP-MoS2 QDs. Brain tissues are meticulously separated from the skull, and their molecular structures are analyzed via FTIR spectroscopy. Employing the curve fitting method on the amide I peak, we delve into the nuances of protein secondary structure. The FTIR analysis reveals a marked increase in ß-sheet structures and a concurrent decline in turn and α-helix structures in the AD group in comparison to the control group. Notably, no statistically significant differences emerge between the treated and control mice. Furthermore, multivariate analysis of the FTIR spectral region, encompassing protein amide molecular structures, underscores a remarkable similarity between the treated and normal mice. This study elucidates the potential of DSPE-PEG-TPP-MoS2 QDs in shielding brain tissue proteins against the pathogenic influences of AD.


Assuntos
Doença de Alzheimer , Molibdênio , Animais , Humanos , Masculino , Camundongos , Doença de Alzheimer/tratamento farmacológico , Amidas , Encéfalo , Brometos , Molibdênio/farmacologia , Molibdênio/química
18.
Angew Chem Int Ed Engl ; 63(1): e202314804, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37955346

RESUMO

Reversible biointerfaces are essential for on-demand molecular recognition to regulate stimuli-responsive bioactivity such as specific interactions with cell membranes. The reversibility on a single platform allows the smart material to kill pathogens or attach/detach cells. Herein, we introduce a 2D-MoS2 functionalized with cationic azobenzene that interacts selectively with either Gram-positive or Gram-negative bacteria in a light-gated fashion. The trans conformation (trans-Azo-MoS2 ) selectively kills Gram-negative bacteria, whereas the cis form (cis-Azo-MoS2 ), under UV light, exhibits antibacterial activity against Gram-positive strains. The mechanistic investigation indicates that the cis-Azo-MoS2 exhibits higher affinity towards the membrane of Gram-positive bacteria compared to trans-Azo-MoS2 . In case of Gram-negative bacteria, trans-Azo-MoS2 internalizes more efficiently than cis-Azo-MoS2 and generates intracellular ROS to kill the bacteria. While the trans-Azo-MoS2 exhibits strong electrostatic interactions and internalizes faster into Gram-negative bacterial cells, cis-Azo-MoS2 primarily interacts with Gram-positive bacteria through hydrophobic and H-bonding interactions. The difference in molecular mechanism leads to photo-controlled Gram-selectivity and enhanced antibacterial activity. We found strain-specific and high bactericidal activity (minimal bactericidal concentration, 0.65 µg/ml) with low cytotoxicity, which we extended to wound healing applications. This methodology provides a single platform for efficiently switching between conformers to reversibly control the strain-selective bactericidal activity regulated by light.


Assuntos
Antibacterianos , Molibdênio , Molibdênio/química , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Raios Ultravioleta , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Cicatrização
19.
Biosens Bioelectron ; 246: 115861, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38029711

RESUMO

Following the discovery of graphene, there has been a surge in exploring other two-dimensional (2D) nanocrystals, including MoS2. Over the past few decades, MoS2-based nanocrystals have shown great potential applications in biosensing, owing to their excellent physico-chemical properties. Unlike graphene, MoS2 shows layer-dependent finite band gaps (∼1.8 eV for a single layer and ∼1.2 for bulk) and relatively strong interaction with the electromagnetic spectrum. The tunability of the size, shape, and intrinsic properties, such as high optical absorption, electron mobility, mechanical strength and large surface area, of MoS2 nanocrystals, make them excellent alternative probe materials for preparing optical, photothermal, and electrical bio/immunosensors. In this review, we will provide insights into the rapid evolutions in bio/immunosensing applications based on MoS2 and its nanohybrids. We emphasized the various synthesis, characterization, and functionalization routes of 2D MoS2 nanosheets/nanoflakes. Finally, we discussed various fabrication techniques and the critical parameters, including the limit of detection (LOD), linear detection range, and sensitivity of the biosensors. In addition, the role of MoS2 in enhancing the performance of biosensors, the limitations associated with current biosensing technologies, future challenges, and clinical implications are addressed. The advantages/disadvantages of each biosensor technique are also summarized. Collectively, we believe that this review will encourage resolute researchers to follow up further with the state-of-the-art MoS2-based biosensing technology.


Assuntos
Técnicas Biossensoriais , Grafite , Nanoestruturas , Nanoestruturas/química , Técnicas Biossensoriais/métodos , Molibdênio/química , Grafite/química , Dissulfetos/química , Imunoensaio
20.
Biotechnol Appl Biochem ; 71(2): 326-335, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38112040

RESUMO

Nanostructures have been used for various biomedical applications due to their optical, antibacterial, magnetic, antioxidant, and biocompatible properties. Cancer is a prevalent disease that severely threatens human life and health. Thus, innovative and effective therapeutic approaches are urgently required for cancer. Photothermal therapy (PTT) is a promising approach to killing cancer cells. In this investigation, we developed a low-cost, simple, green technique to fabricate molybdenum trioxide nanostructures (MNs) using Opuntia ficus-indica mucilage as a template. Moreover, the MNs were functionalized with folic acid (FA) for cancer PTT. The X-ray diffractometer results revealed that the prepared MNs have an orthorhombic crystal phase. The transmission electron microscope image of MNs shows a flake shape with 20-150 nm diameter. The cytotoxicity of MNs and FA-conjugated MNs was studied in vitro. These cell viability assay results suggested that fabricated MoO3 nanostructures reduced 25% of cell viability in MCF-7 cells, even at high doses. However, even with high-dose treatment, FA/MNs do not cause significant cell death. Acridine orange/ethidium bromide (AO/EB) staining revealed DNA and chromatin condensation in MCF-7 cells exposed to MNs. Overall, the in vitro study results suggested that FA/MNs have excellent biocompatibility, which applies to biomedical applications. MNs dispersion temperature gradually increases from 26 to 58°C under 808 nm laser irradiation. We found significant mortality rates after NIR irradiation in MNs- or FA/MNs-treated MCF-7 cells. These findings suggest that FA/MNs can be used as an effective photothermal agent to treat breast cancer.


Assuntos
Neoplasias da Mama , Nanoestruturas , Óxidos , Humanos , Feminino , Fototerapia/métodos , Neoplasias da Mama/tratamento farmacológico , Nanoestruturas/química , Molibdênio/farmacologia , Molibdênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...